Search results
Results from the WOW.Com Content Network
The four roots of the depressed quartic x 4 + px 2 + qx + r = 0 may also be expressed as the x coordinates of the intersections of the two quadratic equations y 2 + py + qx + r = 0 and y − x 2 = 0 i.e., using the substitution y = x 2 that two quadratics intersect in four points is an instance of Bézout's theorem.
Consider a quartic equation expressed in the form + + + + =: . There exists a general formula for finding the roots to quartic equations, provided the coefficient of the leading term is non-zero.
Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the gamma function is a function that satisfies the functional equation f ( x + 1 ) = x f ( x ) {\displaystyle f(x+1)=xf(x)} and the initial value f ( 1 ) = 1. {\displaystyle f ...
Given its domain and its codomain, a function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function, a popular means of illustrating the function. [note 1] [4] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane.
In mathematics, a quaternion algebra over a field F is a central simple algebra A over F [1] [2] that has dimension 4 over F.Every quaternion algebra becomes a matrix algebra by extending scalars (equivalently, tensoring with a field extension), i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.
For example, many retailers use a fiscal quarter ending Jan. 31, instead of Dec. 31, to close the books on the complete holiday spending season. ... Here are the answers to some of the most ...
There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0.
In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers, or a subset of that contains an interval of positive length.