enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complex analysis - Wikipedia

    en.wikipedia.org/wiki/Complex_analysis

    A complex function is a function from complex numbers to complex numbers. In other words, it is a function that has a (not necessarily proper) subset of the complex numbers as a domain and the complex numbers as a codomain. Complex functions are generally assumed to have a domain that contains a nonempty open subset of the complex plane.

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation =; every complex number can be expressed in the form +, where a and b are real numbers.

  4. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    The definition of a complex analytic function is obtained by replacing, in the definitions above, "real" with "complex" and "real line" with "complex plane". A function is complex analytic if and only if it is holomorphic i.e. it is complex differentiable. For this reason the terms "holomorphic" and "analytic" are often used interchangeably for ...

  5. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    exists and is a nonzero complex number. In this case, the point at infinity is a pole of order n if n > 0, and a zero of order | | if n < 0. For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere.

  7. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    The definition of a residue can be generalized to arbitrary Riemann surfaces. Suppose ω {\displaystyle \omega } is a 1-form on a Riemann surface. Let ω {\displaystyle \omega } be meromorphic at some point x {\displaystyle x} , so that we may write ω {\displaystyle \omega } in local coordinates as f ( z ) d z {\displaystyle f(z)\;dz} .

  8. Principal value - Wikipedia

    en.wikipedia.org/wiki/Principal_value

    Complex valued elementary functions can be multiple-valued over some domains. The principal value of some of these functions can be obtained by decomposing the function into simpler ones whereby the principal value of the simple functions are straightforward to obtain.

  9. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    On the region consisting of complex numbers that are not negative real numbers or 0, the function ⁡ is the analytic continuation of the natural logarithm. The values on the negative real line can be obtained as limits of values at nearby complex numbers with positive imaginary parts.