Search results
Results from the WOW.Com Content Network
t. e. In geometry, a pp of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for the diameter of a sphere. In more modern usage, the length of a diameter is also called the diameter.
The number π (/ p aɪ /; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159.The number π appears in many formulae across mathematics and physics.
One radian is defined as the angle at the center of a circle which subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the subtended angle in radians, s is arc length, and r is radius.
where r is the radius and d is the diameter of the sphere. Archimedes first derived this formula by showing that the volume inside a sphere is twice the volume between the sphere and the circumscribed cylinder of that sphere (having the height and diameter equal to the diameter of the sphere). [6]
C = 2πR. A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter.
The conventional definition in pre-calculus geometry is the ratio of the circumference of a circle to its diameter: π = C D . {\displaystyle \pi ={\frac {C}{D}}.} However, because the circumference of a circle is not a primitive analytical concept, this definition is not suitable in modern rigorous treatments.
where A is the area of a squircle with minor radius r, is the gamma function. A = ( k + 1 ) ( k + 2 ) π r 2 {\displaystyle A=(k+1)(k+2)\pi r^{2}} where A is the area of an epicycloid with the smaller circle of radius r and the larger circle of radius kr ( k ∈ N {\displaystyle k\in \mathbb {N} } ), assuming the initial point lies on the ...
t. e. In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.