Search results
Results from the WOW.Com Content Network
Quadratic formula. The roots of the quadratic function y = 1 2 x2 − 3x + 5 2 are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
[1] [2] [3] [better source needed]. For example, 3 x 2 − 2 x y + c {\displaystyle 3x^{2}-2xy+c} is an algebraic expression. Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression:
In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/ x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a / b is b / a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one ...
One half is the irreducible fraction resulting from dividing one (1) by two (2), or the fraction resulting from dividing any number by its double. It often appears in mathematical equations, recipes, measurements, etc.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
1. If y is a variable that depends on x, then , read as "d y over d x" (commonly shortened to "d y d x"), is the derivative of y with respect to x. 2. If f is a function of a single variable x, then is the derivative of f, and is the value of the derivative at a. 3.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
where c 1 = 1 / a 1 , c 2 = a 1 / a 2 , c 3 = a 2 / a 1 a 3 , and in general c n + 1 = 1 / a n + 1 c n . Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence { d i } to make each partial denominator a 1: