Search results
Results from the WOW.Com Content Network
Range minimum query reduced to the lowest common ancestor problem. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l … r].
A range minimum query , is the lowest common ancestor in of and . Because the lowest common ancestor can be solved in constant time using a pre-processing of time and space O ( n ) {\displaystyle O(n)} , range minimum query can as well.
This contrasts with other range query problems, such as the range minimum query which have solutions offering constant time query time and linear space. This is due to the hardness of the mode problem, since even if we know the mode of A [ i : j ] {\displaystyle A[i:j]} and the mode of A [ j + 1 : k ] {\displaystyle A[j+1:k]} , there is no ...
In this tree, the lowest common ancestor of the nodes x and y is marked in dark green. Other common ancestors are shown in light green. In graph theory and computer science, the lowest common ancestor (LCA) (also called least common ancestor) of two nodes v and w in a tree or directed acyclic graph (DAG) T is the lowest (i.e. deepest) node that has both v and w as descendants, where we define ...
For example, AVERAGE=SUM/COUNT and RANGE=MAX−MIN. In the MapReduce framework, these steps are known as InitialReduce (value on individual record/singleton set), Combine (binary merge on two aggregations), and FinalReduce (final function on auxiliary values), [ 5 ] and moving decomposable aggregation before the Shuffle phase is known as an ...
The first 128 symbols of the Fibonacci sequence has an entropy of approximately 7 bits/symbol, but the sequence can be expressed using a formula [F(n) = F(n−1) + F(n−2) for n = 3, 4, 5, ..., F(1) =1, F(2) = 1] and this formula has a much lower entropy and applies to any length of the Fibonacci sequence.
In computer science, the range searching problem consists of processing a set S of objects, in order to determine which objects from S intersect with a query object, called the range. For example, if S is a set of points corresponding to the coordinates of several cities, find the subset of cities within a given range of latitudes and longitudes .
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.