Search results
Results from the WOW.Com Content Network
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
In general mathematics, uppercase Σ is used as an operator for summation. When used at the end of a letter-case word (one that does not use all caps ), the final form (ς) is used. In Ὀδυσσεύς (Odysseus), for example, the two lowercase sigmas (σ) in the center of the name are distinct from the word-final sigma (ς) at the end.
There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
Division is often shown in algebra and science by placing the dividend over the divisor with a horizontal line, also called a fraction bar, between them. For example, "a divided by b" can be written as: which can also be read out loud as "divide a by b" or "a over b".
Define the Weil divisor (s) on X by analogy with the divisor of a rational function. Then the first Chern class of L can be defined to be the divisor ( s ). Changing the rational section s changes this divisor by linear equivalence, since ( fs ) = ( f ) + ( s ) for a nonzero rational function f and a nonzero rational section s of L .
A divisor of that is not a trivial divisor is known as a non-trivial divisor (or strict divisor [6]). A nonzero integer with at least one non-trivial divisor is known as a composite number , while the units −1 and 1 and prime numbers have no non-trivial divisors.
A.M. – arithmetic mean. AP – arithmetic progression. arccos – inverse cosine function. arccosec – inverse cosecant function. (Also written as arccsc.) arccot – inverse cotangent function. arccsc – inverse cosecant function. (Also written as arccosec.) arcexc – inverse excosecant function. (Also written as arcexcsc, arcexcosec.)
A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do". [166] [167] A common approach is to define mathematics by its object of study. [168] [169] [170 ...