Search results
Results from the WOW.Com Content Network
In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1] Colloquially, it may instead refer to kinetic persistence , the shelf-life of a metastable substance or system; that is, the timescale over which it begins to degrade.
The thermal stability of an extended Si-Si bond in t Bu 3 SiSi t Bu 3, or superdisilane, has also been attributed to dispersion interactions. Superdisilane has a Si-Si bond length of 2.697Å in the solid state, significantly extended compared to the gas phase Si-Si bond length of 2.331Å in the parent disilane H 3 SiSiH 3 . [ 1 ]
The Code for Intact Stability was first issued in 1993 under IMO resolution A.749(18)). [1] In 2008, the Code was updated by the IMO. [1] In December 2019, amendments to the Code were adopted that entered into force on 1 January 2020. [5]
The lower the position of a metal's line in the Ellingham diagram, the greater is the stability of its oxide. For example, the line for Al (oxidation of aluminium) is found to be below that for Fe (formation of Fe 2 O 3) meaning that aluminium oxide is more stable than iron(III) oxide. Stability of metallic oxides decreases with increase in ...
In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the ...
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.
A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous states) occur and coexist at equilibrium.
Compounds that obey the 18-electron rule are typically "exchange inert". Examples include [Co(NH 3) 6]Cl 3, Mo(CO) 6, and [Fe(CN) 6] 4−.In such cases, in general ligand exchange occurs via dissociative substitution mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand.