Search results
Results from the WOW.Com Content Network
Apparent horizons depend on the "slicing" of a spacetime. That is, the location and even existence of an apparent horizon depends on the way spacetime is divided into space and time. For example, it is possible to slice the Schwarzschild geometry in such a way that there is no apparent horizon, ever, despite the fact that there is certainly an ...
Event horizon, a boundary in spacetime beyond which events cannot affect the observer, thus referring to a black hole's boundary and the boundary of an expanding universe; Apparent horizon, a surface defined in general relativity; Cauchy horizon, a surface found in the study of Cauchy problems; Cosmological horizon, a limit of observability
The curvature of the horizon is easily seen in this 2008 photograph, taken from a Space Shuttle at an altitude of 226 km (140 mi). The horizon is the apparent curve that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This curve divides all ...
The boundary of the union of all trapped surfaces around a black hole is called an apparent horizon. A related term trapped null surface is often used interchangeably. However, when discussing causal horizons, trapped null surfaces are defined as only null vector fields giving rise to null surfaces. But marginally trapped surfaces may be ...
The geometric center of the Earth, i.e. the arithmetic mean position of all points within the oblate spheroid that is the precise shape of the Earth. geocentric With reference to, or pertaining to, the geometric center of the Earth; [14] centered upon the Earth, e.g. a geocentric orbit. geocentric zenith
The cosmological horizon, also called the particle horizon or the light horizon, is the maximum distance from which particles can have traveled to the observer in the age of the universe. This horizon represents the boundary between the observable and the unobservable regions of the universe. [81] [82]
This refraction causes the Sun to appear above the horizon when it is actually below the horizon. During the autumnal equinox, also referred to as the "September equinox," the Sun crosses the ...
In the case of a horizon perceived by a uniformly accelerating observer in empty space, the horizon seems to remain a fixed distance from the observer no matter how its surroundings move. Varying the observer's acceleration may cause the horizon to appear to move over time or may prevent an event horizon from existing, depending on the ...