enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The term Fibonacci sequence is also applied more generally to any function from the integers to a field for which (+) = + (+).These functions are precisely those of the form () = () + (), so the Fibonacci sequences form a vector space with the functions () and () as a basis.

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  5. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  6. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...

  7. Fibonacci polynomials - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_polynomials

    In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials .

  8. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...

  9. Fibonomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Fibonomial_coefficient

    Dov Jarden proved that the Fibonomials appear as coefficients of an equation involving powers of consecutive Fibonacci numbers, namely Jarden proved that given any generalized Fibonacci sequence , that is, a sequence that satisfies = + for every , then