enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  3. Frobenius solution to the hypergeometric equation - Wikipedia

    en.wikipedia.org/wiki/Frobenius_solution_to_the...

    In the following we solve the second-order differential equation called the hypergeometric differential equation using Frobenius method, named after Ferdinand Georg Frobenius. This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for ...

  4. Induced representation - Wikipedia

    en.wikipedia.org/wiki/Induced_representation

    The Frobenius formula states that if χ is the character of the representation σ, given by χ(h) = Tr σ(h), then the character ψ of the induced representation is given by ψ ( g ) = ∑ x ∈ G / H χ ^ ( x − 1 g x ) , {\displaystyle \psi (g)=\sum _{x\in G/H}{\widehat {\chi }}\left(x^{-1}gx\right),}

  5. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method calls for the construction of a power series solution = =. If a 2 is zero for some z, then the Frobenius method, a variation on this method, is suited to deal with so called "singular points". The method works analogously for higher order equations as well as for systems.

  6. Fuchsian theory - Wikipedia

    en.wikipedia.org/wiki/Fuchsian_theory

    In this case the recursive calculation of the Frobenius series' coefficients stops for some roots and the Frobenius series method does not give an -dimensional solution space. The following can be shown independent of the distance between roots of the indicial polynomial: Let α ∈ C {\displaystyle \alpha \in \mathbb {C} } be a μ ...

  7. Frobenius theorem (differential topology) - Wikipedia

    en.wikipedia.org/wiki/Frobenius_theorem...

    Frobenius' theorem is one of the basic tools for the study of vector fields and foliations. There are thus two forms of the theorem: one which operates with distributions , that is smooth subbundles D of the tangent bundle TM ; and the other which operates with subbundles of the graded ring Ω( M ) of all forms on M .

  8. Officer raped woman at his home, court hears - AOL

    www.aol.com/officer-raped-woman-home-court...

    February 10, 2025 at 2:03 PM Stuart Mines denied raping a woman who went to his house for Sunday lunch [BBC] An off-duty police officer raped a woman at his home after meeting her through a dating ...

  9. Fuchs' theorem - Wikipedia

    en.wikipedia.org/wiki/Fuchs'_theorem

    In mathematics, Fuchs' theorem, named after Lazarus Fuchs, states that a second-order differential equation of the form ″ + ′ + = has a solution expressible by a generalised Frobenius series when (), () and () are analytic at = or is a regular singular point.