enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The Cartesian coordinates of P are those three numbers, in the chosen order. The reverse construction determines the point P given its three coordinates. Alternatively, each coordinate of a point P can be taken as the distance from P to the plane defined by the other two axes, with the sign determined by the orientation of the corresponding axis.

  3. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...

  4. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    Euclidean distance. In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance. These names come from the ancient Greek ...

  5. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple. In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates.

  6. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    Consider the one-dimensional curve shown in Fig. 3. At point P, taken as an origin, x is one of the Cartesian coordinates, and q 1 is one of the curvilinear coordinates. The local (non-unit) basis vector is b 1 (notated h 1 above, with b reserved for unit vectors) and it is built on the q 1 axis which is a tangent to that coordinate line at the ...

  7. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    Cartesian coordinates of example points. The main historical example is the Cartesian plane in analytic geometry. In order to represent geometrical shapes in a numerical way, and extract numerical information from shapes' numerical representations, René Descartes assigned to each point in the plane a pair of real numbers, called its coordinates.

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The coordinates of a point P may change due to either a rotation of the coordinate system CS , or a rotation of the point P . In the latter case, the rotation of P also produces a rotation of the vector v representing P. In other words, either P and v are fixed while CS rotates (alias), or CS is fixed while P and v rotate (alibi). Any given ...

  9. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    Translation of axes. Transformation of coordinates that moves the origin. In mathematics, a translation of axes in two dimensions is a mapping from an xy - Cartesian coordinate system to an x'y' -Cartesian coordinate system in which the x' axis is parallel to the x axis and k units away, and the y' axis is parallel to the y axis and h units away.