Search results
Results from the WOW.Com Content Network
Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe.Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).
where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...
The electromagnetic force, carried by the photon, creates electric and magnetic fields, which are responsible for the attraction between orbital electrons and atomic nuclei which holds atoms together, as well as chemical bonding and electromagnetic waves, including visible light, and forms the basis for electrical technology. Although the ...
These interactions tend to align the molecules to increase attraction (reducing potential energy). An example of a dipole–dipole interaction can be seen in hydrogen chloride (HCl): the positive end of a polar molecule will attract the negative end of the other molecule and influence its position. Polar molecules have a net attraction between ...
The attraction causing the molecules to get closer, can only happen if the molecules remain in proximity for the duration of time it takes to physically move closer. Therefore, the attractive forces are strongest when the molecules move at low speeds. This means that the attraction between molecules is significant when gas temperatures is low.
Cohesion, along with adhesion (attraction between unlike molecules), helps explain phenomena such as meniscus, surface tension and capillary action. Mercury in a glass flask is a good example of the effects of the ratio between cohesive and adhesive forces.
The concept of gravitational focusing describes how the gravitational attraction between two particles increases the probability that they will collide. Without gravitational force, the likelihood of a collision would depend on the cross-sectional area of the two particles.
The resulting attraction between different quarks causes the formation of composite particles known as hadrons (see § Strong interaction and color charge below). The quarks that determine the quantum numbers of hadrons are called valence quarks ; apart from these, any hadron may contain an indefinite number of virtual " sea " quarks ...