Search results
Results from the WOW.Com Content Network
A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Projective spaces are widely used in geometry , allowing for simpler statements and simpler proofs.
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations.This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (projective space) and a selective set of basic geometric concepts.
In mathematics, real projective space, denoted or (), is the topological space of lines passing through the origin 0 in the real space +. It is a compact , smooth manifold of dimension n , and is a special case G r ( 1 , R n + 1 ) {\displaystyle \mathbf {Gr} (1,\mathbb {R} ^{n+1})} of a Grassmannian space.
The group of symmetries of the projective space is the group of projectivized linear automorphisms + (). The choice of a morphism to a projective space j : X → P n {\displaystyle j:X\to \mathbf {P} ^{n}} modulo the action of this group is in fact equivalent to the choice of a globally generating n -dimensional linear system of divisors on a ...
We also construct a sheaf on , called the “structure sheaf” as in the affine case, which makes it into a scheme.As in the case of the Spec construction there are many ways to proceed: the most direct one, which is also highly suggestive of the construction of regular functions on a projective variety in classical algebraic geometry, is the following.
Projective geometry is not necessarily concerned with curvature and the real projective plane may be twisted up and placed in the Euclidean plane or 3-space in many different ways. [1] Some of the more important examples are described below.
In mathematics, complex projective space is the projective space with respect to the field of complex numbers.By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account).
This leads to the concept of duality in projective geometry, the principle that the roles of points and lines can be interchanged in a theorem in projective geometry and the result will also be a theorem. Analogously, the theory of points in projective 3-space is dual to the theory of planes in projective 3-space, and so on for higher dimensions.