Search results
Results from the WOW.Com Content Network
Starting with Python 3.12, the built-in "sum()" function uses the Neumaier summation. [ 25 ] In the Julia language, the default implementation of the sum function does pairwise summation for high accuracy with good performance, [ 26 ] but an external library provides an implementation of Neumaier's variant named sum_kbn for the cases when ...
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
The decimal digital root of any non-zero integer will be a number in the range 1 to 9, whereas the digit sum can take any value. Digit sums and digital roots can be used for quick divisibility tests : a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively.
Name First elements Short description OEIS Kolakoski sequence: 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... The n th term describes the length of the n th run : A000002: Euler's ...
A summation-by-parts (SBP) finite difference operator conventionally consists of a centered difference interior scheme and specific boundary stencils that mimics behaviors of the corresponding integration-by-parts formulation. [3] [4] The boundary conditions are usually imposed by the Simultaneous-Approximation-Term (SAT) technique. [5]
For example, the decimal number 123456789 cannot be exactly represented if only eight decimal digits of precision are available (it would be rounded to one of the two straddling representable values, 12345678 × 10 1 or 12345679 × 10 1), the same applies to non-terminating digits (. 5 to be rounded to either .55555555 or .55555556).