Search results
Results from the WOW.Com Content Network
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
Substitution, written M[x := N], is the process of replacing all free occurrences of the variable x in the expression M with expression N. Substitution on terms of the lambda calculus is defined by recursion on the structure of terms, as follows (note: x and y are only variables while M and N are any lambda expression): x[x := N] = N
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution, [6] and also known by variant names such as half-tangent substitution or half-angle substitution.
Euler substitution is a method for evaluating integrals of the form (, + +), where is a rational function of and + +. In such cases, the integrand can be changed to a rational function by using the substitutions of Euler.
A double integral, on the other hand, is defined with respect to area in the xy-plane. If the double integral exists, then it is equal to each of the two iterated integrals (either "dy dx" or "dx dy") and one often computes it by computing either of the iterated integrals. But sometimes the two iterated integrals exist when the double integral ...
In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer.
One most important example is the "substitution lemma", which with the notation of λx becomes (M x:=N ) y:=P = (M y:=P ) x:=(N y:=P ) (where x≠y and x not free in P) A surprising counterexample, due to Melliès, [ 5 ] shows that the way this rule is encoded in the original calculus of explicit substitutions is not strongly normalizing .