Search results
Results from the WOW.Com Content Network
Pileup format is a text-based format for summarizing the base calls of aligned reads to a reference sequence. This format facilitates visual display of SNP /indel calling and alignment. It was first used by Tony Cox and Zemin Ning at the Wellcome Trust Sanger Institute , and became widely known through its implementation within the SAMtools ...
Name First elements ... The number of free polyominoes with n cells. A000105: Catalan numbers C n: ... Numbers of the form pq where p and q are distinct primes ...
For example, the sequence ,, is a subsequence of ,,,,, obtained after removal of elements ,, and . The relation of one sequence being the subsequence of another is a partial order . Subsequences can contain consecutive elements which were not consecutive in the original sequence.
The final result is that the last cell contains all the longest subsequences common to (AGCAT) and (GAC); these are (AC), (GC), and (GA). The table also shows the longest common subsequences for every possible pair of prefixes. For example, for (AGC) and (GA), the longest common subsequence are (A) and (G).
There is no similar relationship between shortest common supersequences and longest common subsequences of three or more input sequences. (In particular, LCS and SCS are not dual problems .) However, both problems can be solved in O ( n k ) {\displaystyle O(n^{k})} time using dynamic programming, where k {\displaystyle k} is the number of ...
This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not the only solution: for instance, 0, 4, 6, 9, 11, 15 0, 2, 6, 9, 13, 15 0, 4, 6, 9, 13, 15. are other increasing subsequences of equal length in the same input sequence.
Cartesian trees are defined using binary trees, which are a form of rooted tree.To construct the Cartesian tree for a given sequence of distinct numbers, set its root to be the minimum number in the sequence, [1] and recursively construct its left and right subtrees from the subsequences before and after this number, respectively.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.