Ad
related to: how do you calculate your basal metabolic rate formula
Search results
Results from the WOW.Com Content Network
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. [1] It is reported in energy units per unit time ranging from watt (joule/second) to ml O 2 /min or joule per hour per kg body mass J/(h·kg).
Basal metabolic rate (BMR) accounts for about 60% of the calories you burn each day. To calculate your BMR, you should use the Mifflin-St. Jeor equation, which is the most accurate. Knowing your ...
The Schofield Equation is a method of estimating the basal metabolic rate (BMR) of adult men and women published in 1985. [1] This is the equation used by the WHO in their technical report series. [2] The equation that is recommended to estimate BMR by the US Academy of Nutrition and Dietetics is the Mifflin-St. Jeor equation. [3]
Basal metabolic rate (BMR) is how many calories you need for basic bodily functions. Here's how to calculate it for women and why it matters for health.
Kleiber's plot comparing body size to metabolic rate for a variety of species. [1]Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, states, after many observations that, for a vast number of animals, an animal's Basal Metabolic Rate scales to the 3 ⁄ 4 power of the animal's mass.
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
The metabolic equivalent of task (MET) is the objective measure of the ratio of the rate at which a person expends energy, relative to the mass of that person, while performing some specific physical activity compared to a reference, currently set by convention at an absolute 3.5 mL of oxygen per kg per minute, which is the energy expended when sitting quietly by a reference individual, chosen ...
Ad
related to: how do you calculate your basal metabolic rate formula