Search results
Results from the WOW.Com Content Network
A counterpart to Fermi–Dirac statistics is Bose–Einstein statistics, which applies to identical and indistinguishable particles with integer spin (0, 1, 2, etc.) called bosons. In classical physics, Maxwell–Boltzmann statistics is used to describe particles that are identical and treated as distinguishable.
Both Fermi–Dirac and Bose–Einstein become Maxwell–Boltzmann statistics at high temperature or at low concentration. Bose–Einstein statistics was introduced for photons in 1924 by Bose and generalized to atoms by Einstein in 1924–25. The expected number of particles in an energy state i for Bose–Einstein statistics is:
This is the first quantization approach and historically Bose–Einstein and Fermi–Dirac correlations were derived through this wave function formalism. In high-energy physics , however, one is faced with processes where particles are produced and absorbed and this demands a more general field theoretical approach called second quantization .
As can be seen, even a system of two particles exhibits different statistical behaviors between distinguishable particles, bosons, and fermions. In the articles on Fermi–Dirac statistics and Bose–Einstein statistics, these principles are extended to large number of particles, with qualitatively similar results.
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
All known particles obey either Fermi–Dirac statistics or Bose–Einstein statistics. A particle's intrinsic spin always predicts the statistics of a collection of such particles and conversely: [3] integral-spin particles are bosons with Bose–Einstein statistics, half-integral-spin particles are fermions with Fermi–Dirac statistics.
The Dirac Lagrangian of the quarks coupled to the gluon fields is given by = ¯, where is a three component column vector of Dirac spinors, each element of which refers to a quark field with a specific color charge (i.e. red, blue, and green) and summation over flavor (i.e. up, down, strange, etc.) is implied.
The Fermi–Dirac primes are named from an analogy to particle physics. In physics, bosons are particles that obey Bose–Einstein statistics, in which it is allowed for multiple particles to be in the same state at the same time. Fermions are particles that obey Fermi–Dirac statistics, which only allow a single particle in each state ...