Search results
Results from the WOW.Com Content Network
The Fashion MNIST dataset is a large freely available database of fashion images that is commonly used for training and testing various machine learning systems. [1] [2] Fashion-MNIST was intended to serve as a replacement for the original MNIST database for benchmarking machine learning algorithms, as it shares the same image size, data format and the structure of training and testing splits.
t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map.
Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the (final) successor to MNIST. [15] [16] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits.
In January 2019, the TensorFlow team released a developer preview of the mobile GPU inference engine with OpenGL ES 3.1 Compute Shaders on Android devices and Metal Compute Shaders on iOS devices. [30] In May 2019, Google announced that their TensorFlow Lite Micro (also known as TensorFlow Lite for Microcontrollers) and ARM's uTensor would be ...
The first convolutional layers perform feature extraction. For the 28x28 pixel MNIST image test an initial 256 9x9 pixel convolutional kernels (using stride 1 and rectified linear unit (ReLU) activation, defining 20x20 receptive fields) convert the pixel input into 1D feature activations and induce nonlinearity. [1]
Logistic activation function. The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights.
The course was swampy in the low parts, but the sky was clear and the November weather fair enough for running fast. Which is exactly what Jordan van Druff was doing. The muscular eighth-grader had opened up a long lead against the best 13- and 14-year old distance runners in the South.
DeepDream is a computer vision program created by Google engineer Alexander Mordvintsev that uses a convolutional neural network to find and enhance patterns in images via algorithmic pareidolia, thus creating a dream-like appearance reminiscent of a psychedelic experience in the deliberately overprocessed images.