enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.

  3. Conformable matrix - Wikipedia

    en.wikipedia.org/wiki/Conformable_matrix

    Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if A is an m × n matrix and B is an s × p matrix, then n needs to be equal to s for the matrix product AB to be defined.

  4. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  6. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  7. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    However, Montgomery multiplication requires a conversion to and from Montgomery domain which means it is expensive when a few modular multiplications are needed. To perform Barrett multiplication with non-constant operands, one can set a {\displaystyle a} as the product of the operands and set b {\displaystyle b} to 1 {\displaystyle 1} .

  8. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Multiplication of X by e i extracts the i-th column, while multiplication by B i puts it into the desired position in the final vector. Alternatively, the linear sum can be expressed using the Kronecker product : vec ⁡ ( X ) = ∑ i = 1 n e i ⊗ X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {e} _{i}\otimes ...

  9. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.