enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helicity (particle physics) - Wikipedia

    en.wikipedia.org/wiki/Helicity_(particle_physics)

    The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...

  3. Chirality (physics) - Wikipedia

    en.wikipedia.org/wiki/Chirality_(physics)

    Mathematically, helicity is the sign of the projection of the spin vector onto the momentum vector: "left" is negative, "right" is positive. The chirality of a particle is more abstract: It is determined by whether the particle transforms in a right- or left-handed representation of the Poincaré group. [a]

  4. Hydrodynamical helicity - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamical_helicity

    Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.

  5. Chirality - Wikipedia

    en.wikipedia.org/wiki/Chirality

    In particular for a massless particle the helicity is the same as the chirality while for an antiparticle they have opposite sign. The handedness in both chirality and helicity relate to the rotation of a particle while it proceeds in linear motion with reference to the human hands. The thumb of the hand points towards the direction of linear ...

  6. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    where p is the momentum operator, S the spin operator for a particle of spin s, E is the total energy of the particle, and m 0 its rest mass. Helicity indicates the orientations of the spin and translational momentum vectors. [29] Helicity is frame-dependent because of the 3-momentum in the definition, and is quantized due to spin quantization ...

  7. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...

  8. W and Z bosons - Wikipedia

    en.wikipedia.org/wiki/W_and_Z_bosons

    boson can change the type of the particle – for example changing a strange quark into an up quark. The neutral Z boson cannot change the electric charge of any particle, nor can it change any other of the so-called "charges" (such as strangeness, baryon number, charm, etc.). The emission or absorption of a Z 0

  9. Magnetic helicity - Wikipedia

    en.wikipedia.org/wiki/Magnetic_helicity

    Magnetic helicity is a gauge-dependent quantity, because can be redefined by adding a gradient to it (gauge choosing).However, for perfectly conducting boundaries or periodic systems without a net magnetic flux, the magnetic helicity contained in the whole domain is gauge invariant, [15] that is, independent of the gauge choice.

  1. Related searches positive helicity of a particle is known as the best example of energy transfer

    positive helicity of a particlehelicity in physics
    helicity particle physicshydrodynamic helicity