enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wave packet - Wikipedia

    en.wikipedia.org/wiki/Wave_packet

    A looped animation of a wave packet propagating without dispersion: the envelope is maintained even as the phase changes. In physics, a wave packet (also known as a wave train or wave group) is a short burst of localized wave action that travels as a unit, outlined by an envelope.

  3. Quantum biology - Wikipedia

    en.wikipedia.org/wiki/Quantum_biology

    Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. [1] An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.

  4. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    A portion of the wave packet passes through the barrier. The wave function of a physical system of particles specifies everything that can be known about the system. [8] Therefore, problems in quantum mechanics analyze the system's wave function. Using mathematical formulations, such as the Schrödinger equation, the time evolution of a known ...

  5. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Dispersion occurs when sinusoidal waves of different wavelengths have different propagation velocities, so that a wave packet of mixed wavelengths tends to spread out in space. The speed of a plane wave, v {\displaystyle v} , is a function of the wave's wavelength λ {\displaystyle \lambda } :

  6. Hartman effect - Wikipedia

    en.wikipedia.org/wiki/Hartman_effect

    Since tunneling is a wave phenomenon, it occurs for all kinds of waves - matter waves, electromagnetic waves, and even sound waves. Hence the Hartman effect should exist for all tunneling waves. There is no unique and universally accepted definition of "tunneling time" in physics.

  7. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    For example, the electron wave function for an unexcited hydrogen atom is a spherically symmetric function known as an s orbital . Analytic solutions of the Schrödinger equation are known for very few relatively simple model Hamiltonians including the quantum harmonic oscillator , the particle in a box , the dihydrogen cation , and the ...

  8. Soliton - Wikipedia

    en.wikipedia.org/wiki/Soliton

    Solitary wave in a laboratory wave channel. In mathematics and physics, a soliton is a nonlinear, self-reinforcing, localized wave packet that is strongly stable, in that it preserves its shape while propagating freely, at constant velocity, and recovers it even after collisions with other such localized wave packets.

  9. Quantum potential - Wikipedia

    en.wikipedia.org/wiki/Quantum_potential

    In the framework of the de Broglie–Bohm theory, the quantum potential is a term within the Schrödinger equation which acts to guide the movement of quantum particles. . The quantum potential approach introduced by Bohm [1] [2] provides a physically less fundamental exposition of the idea presented by Louis de Broglie: de Broglie had postulated in 1925 that the relativistic wave function ...