enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Then () = means that the order of the group is 8 (i.e., there are 8 numbers less than 20 and coprime to it); () = means the order of each element divides 4, that is, the fourth power of any number coprime to 20 is congruent to 1 (mod 20).

  3. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Considered as a group under addition, / is a cyclic group, and all cyclic groups are isomorphic with / for some m. [8] The ring of integers modulo m is a field if and only if m is prime (this ensures that every nonzero element has a multiplicative inverse).

  5. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.

  6. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    In group theory, the quaternion group Q 8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset {,,,,,} of the quaternions under multiplication. It is given by the group presentation

  7. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...

  8. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The multiplicative group of the field is the group whose underlying set is the set of nonzero real numbers {} and whose operation is multiplication. More generally, one speaks of an additive group whenever the group operation is notated as addition; in this case, the identity is typically denoted ⁠ 0 {\displaystyle 0} ⁠ , and the inverse of ...

  9. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [4] [5] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring /). [6]