Search results
Results from the WOW.Com Content Network
In mathematics, the Wythoff array is an infinite matrix of positive integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.
The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = = for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
The Fibonacci sequence has been studied extensively and generalized in many ways, for example, by starting with other numbers than 0 and 1, by adding more than two numbers to generate the next number, or by adding objects other than numbers.
The penultimate bit is the most significant bit and the first bit is the least significant bit. Also, leading zeros cannot be omitted as they can be in, for example, decimal numbers. The first few Fibonacci codes are shown below, and also their so-called implied probability, the value for each number that has a minimum-size code in Fibonacci ...
81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the n th power of a matrix with determinant −1:
Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have P n = 2P n−1 + P n−2.
The expansion produced by this method for a number is called the greedy Egyptian expansion, Sylvester expansion, or Fibonacci–Sylvester expansion of . However, the term Fibonacci expansion usually refers, not to this method, but to representation of integers as sums of Fibonacci numbers .