Search results
Results from the WOW.Com Content Network
One reactant (A) is chosen, and the balanced chemical equation is used to determine the amount of the other reactant (B) necessary to react with A. If the amount of B actually present exceeds the amount required, then B is in excess and A is the limiting reagent. If the amount of B present is less than required, then B is the limiting reagent.
An excess reactant is a reactant that is left over once the reaction has stopped due to the limiting reactant being exhausted. Consider the equation of roasting lead(II) sulfide (PbS) in oxygen (O 2) to produce lead(II) oxide (PbO) and sulfur dioxide (SO 2): 2 PbS + 3 O 2 → 2 PbO + 2 SO 2
Diffusion control is more likely in solution where diffusion of reactants is slower due to the greater number of collisions with solvent molecules. Reactions where the activated complex forms easily and the products form rapidly are most likely to be limited by diffusion control. Examples are those involving catalysis and enzymatic reactions.
Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction. The limiting reagent determines the theoretical yield—the relative quantity of moles of reactants and the product formed in a chemical reaction. Other reactants are said to be present in excess.
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.
In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.