Search results
Results from the WOW.Com Content Network
In a simulation, the potential energy of an atom, , is given by [3] = (()) + (), where is the distance between atoms and , is a pair-wise potential function, is the contribution to the electron charge density from atom of type at the location of atom , and is an embedding function that represents the energy required to place atom of type into the electron cloud.
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
Radioisotope time constant, mean lifetime of an atom before decay τ (no standard symbol) = / s [T] Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) D can only be found experimentally N/A Gy = 1 J/kg (Gray) [L] 2 [T] −2: Equivalent dose: H =
A model derived from the nuclear shell model is the alpha particle model developed by Henry Margenau, Edward Teller, J. K. Pering, T. H. Skyrme, also sometimes called the Skyrme model. [ 8 ] [ 9 ] Note, however, that the Skyrme model is usually taken to be a model of the nucleon itself, as a "cloud" of mesons (pions), rather than as a model of ...
Nuclear binding energy, the energy required to split a nucleus of an atom. Nuclear potential energy , the potential energy of the particles inside an atomic nucleus. Nuclear reaction , a process in which nuclei or nuclear particles interact, resulting in products different from the initial ones; see also nuclear fission and nuclear fusion .
Under the free electron model, the electrons in a metal can be considered to form a Fermi gas. The number density N / V {\displaystyle N/V} of conduction electrons in metals ranges between approximately 10 28 and 10 29 electrons/m 3 , which is also the typical density of atoms in ordinary solid matter.
The Hubbard model introduces short-range interactions between electrons to the tight-binding model, which only includes kinetic energy (a "hopping" term) and interactions with the atoms of the lattice (an "atomic" potential). When the interaction between electrons is strong, the behavior of the Hubbard model can be qualitatively different from ...