Search results
Results from the WOW.Com Content Network
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain.It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing).
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.
In continuum mechanics, stress is a physical quantity that describes forces present during deformation.For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation.
Tensile testing on a coir composite. Specimen size is not to standard (Instron). Tensile testing, also known as tension testing, [1] is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure.
The stress concentration factor, , is the ratio of the highest stress to a nominal stress of the gross cross-section and defined as [3] = Note that the dimensionless stress concentration factor is a function of the geometry shape and independent of its size. [4]
An unmounted resistive foil strain gauge. A strain gauge takes advantage of the physical property of electrical conductance and its dependence on the conductor's geometry. . When an electrical conductor is stretched within the limits of its elasticity such that it does not break or permanently deform, it will become narrower and longer, which increases its electrical resistance end-to-
Where two voltages are given below separated by "/", the first is the root-mean-square voltage between a phase and the neutral connector, whereas the second is the corresponding root-mean-square voltage between two phases (exception: the category shown below called "One Phase", where 240 V is the root-mean-square voltage between the two legs of a split phase).