enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plasma osmolality - Wikipedia

    en.wikipedia.org/wiki/Plasma_Osmolality

    For a given solution, osmolarity is slightly less than osmolality, because the total solvent weight (the divisor used for osmolality) excludes the weight of any solutes, whereas the total solution volume (used for osmolarity) includes solute content. Otherwise, one litre of plasma would be equivalent to one kilogram of plasma, and plasma ...

  3. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]

  4. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent. Through the procedure called ebullioscopy, a known constant can be used to calculate an unknown molar mass. The term ebullioscopy means "boiling measurement" in Latin.

  5. Osmol gap - Wikipedia

    en.wikipedia.org/wiki/Osmol_gap

    The osmol gap is typically calculated with the following formula (all values in mmol/L): = = ([+] + [] + []) In non-SI laboratory units: Calculated osmolality = 2 x [Na mmol/L] + [glucose mg/dL] / 18 + [BUN mg/dL] / 2.8 + [ethanol/3.7] [3] (note: the values 18 and 2.8 convert mg/dL into mmol/L; the molecular weight of ethanol is 46, but empiric data shows that it does not act as an ideal ...

  6. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    The osmotic pressure of solution is determined by the number of particles present and by the temperature. For example, a 1 molar solution of a substance contains 6.022 × 10 23 molecules per liter of that substance and at 0 °C it has an osmotic

  7. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  8. Henry's law - Wikipedia

    en.wikipedia.org/wiki/Henry's_law

    In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution. An example where Henry's law is at play is the depth-dependent dissolution of oxygen and nitrogen in the blood of underwater divers that changes during decompression, going to decompression sickness.

  9. Osmotic coefficient - Wikipedia

    en.wikipedia.org/wiki/Osmotic_coefficient

    where is the chemical potential of the pure solvent and is the chemical potential of the solvent in a solution, M A is its molar mass, x A its mole fraction, R the gas constant and T the temperature in Kelvin. [1] The latter osmotic coefficient is sometimes called the rational osmotic coefficient. The values for the two definitions are ...

  1. Related searches calculate the molarity of solution made from blood gas is due to changes

    what is molarity concentrationmolarity definition