enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    where each is known as a coregionalization matrix. Therefore, the kernel derived from LMC is a sum of the products of two covariance functions, one that models the dependence between the outputs, independently of the input vector (the coregionalization matrix ), and one that models the input dependence, independently of {()} = (the covariance ...

  3. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. [1]Kernel methods (for instance, support vector machines or Gaussian processes [2]) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane.

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.

  5. Math Kernel Library - Wikipedia

    en.wikipedia.org/wiki/Math_Kernel_Library

    Intel oneAPI Math Kernel Library (Intel oneMKL) , formerly known as Intel Math Kernel Library, is a library of optimized math routines for science, engineering, and financial applications. Core math functions include BLAS , LAPACK , ScaLAPACK , sparse solvers, fast Fourier transforms , and vector math.

  6. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.

  7. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.

  8. Block Wiedemann algorithm - Wikipedia

    en.wikipedia.org/wiki/Block_Wiedemann_algorithm

    The block Wiedemann algorithm can be used to calculate the leading invariant factors of the matrix, ie, the largest blocks of the Frobenius normal form.Given and , where is a finite field of size , the probability that the leading < invariant factors of are preserved in = is

  9. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...