Search results
Results from the WOW.Com Content Network
Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.
It applies in various situations, for example to irreducibility of a linear representation, or of an algebraic variety; where it means just the same as irreducible over an algebraic closure. In commutative algebra, a commutative ring R is irreducible if its prime spectrum, that is, the topological space Spec R, is an irreducible topological space.
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of ...
In mathematics, a multivariate polynomial defined over the rational numbers is absolutely irreducible if it is irreducible over the complex field. [1] [2] [3] For example, + is absolutely irreducible, but while + is irreducible over the integers and the reals, it is reducible over the complex numbers as + = (+) (), and thus not absolutely irreducible.
The fact that the polynomial after substitution is irreducible then allows concluding that the original polynomial is as well. This procedure is known as applying a shift. For example consider H = x 2 + x + 2, in which the coefficient 1 of x is not divisible by any prime, Eisenstein's criterion does not apply to H.
If x ∤ p(x) then p is irreducible if and only if p ∗ is irreducible. [5] p is primitive if and only if p ∗ is primitive. [4] Other properties of reciprocal polynomials may be obtained, for instance: A self-reciprocal polynomial of odd degree is divisible by x+1, hence is not irreducible if its degree is > 1.
To see this, choose a monic irreducible polynomial f(X 1, ..., X n, Y) whose root generates N over E. If f(a 1, ..., a n, Y) is irreducible for some a i, then a root of it will generate the asserted N 0.) Construction of elliptic curves with large rank. [2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's ...