Search results
Results from the WOW.Com Content Network
The Interquartile Range (IQR), defined as the difference between the upper and lower quartiles (), may be used to characterize the data when there may be extremities that skew the data; the interquartile range is a relatively robust statistic (also sometimes called "resistance") compared to the range and standard deviation. There is also a ...
The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q 3 − Q 1 [1]. The IQR is an example of a trimmed estimator , defined as the 25% trimmed range , which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. [ 5 ]
If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.
This is the minimum value of the set, so the zeroth quartile in this example would be 3. 3 First quartile The rank of the first quartile is 10×(1/4) = 2.5, which rounds up to 3, meaning that 3 is the rank in the population (from least to greatest values) at which approximately 1/4 of the values are less than the value of the first quartile.
The third quartile value can be easily obtained by finding the "middle" number between the median and the maximum. For the hourly temperatures, the "middle" number between 70°F and 81°F is 75°F. The interquartile range, or IQR, can be calculated by subtracting the first quartile value (Q 1) from the third quartile value (Q 3):
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
Compared to the first quartile, those in the second, third and fourth quartiles tested 8% to 13% better in visual attention, fluid intelligence and complex processing speed.
The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles. The use of the term hinge for the lower or upper quartiles derives from John Tukey 's work on exploratory data analysis in the late 1970s, [ 1 ] and midhinge is a fairly modern term dating from around that time.