Search results
Results from the WOW.Com Content Network
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...
A simple example is the Fermat factorization method, which considers the sequence of numbers :=, for := ⌈ ⌉ +. If one of the x i {\displaystyle x_{i}} equals a perfect square b 2 {\displaystyle b^{2}} , then N = a i 2 − b 2 = ( a i + b ) ( a i − b ) {\displaystyle N=a_{i}^{2}-b^{2}=(a_{i}+b)(a_{i}-b)} is a (potentially non-trivial ...
Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.
An integer greater than one can be written as a sum of two squares if and only if its prime decomposition contains no factor p k, where prime and k is odd. In writing a number as a sum of two squares, it is allowed for one of the squares to be zero, or for both of them to be equal to each other, so all squares and all doubles of squares are ...
Dixon's factorization method; E. Euler's factorization method; F. Factor base; Fast Library for Number Theory; Fermat's factorization method; G. General number field ...
Thus, to prove that Fermat's equation has no solutions for n > 2, it would suffice to prove that it has no solutions for at least one prime factor of every n. Each integer n > 2 is divisible by 4 or by an odd prime number (or both). Therefore, Fermat's Last Theorem could be proved for all n if it could be proved for n = 4 and for all odd primes p.
It was while researching perfect numbers that he discovered Fermat's little theorem. He invented a factorization method—Fermat's factorization method—and popularized the proof by infinite descent, which he used to prove Fermat's right triangle theorem which includes as a corollary Fermat's Last Theorem for the case n = 4.
Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):