Search results
Results from the WOW.Com Content Network
When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square ...
This article is supplemental for “Convergence of random variables” and provides proofs for selected results. Several results will be established using the portmanteau lemma: A sequence {X n} converges in distribution to X if and only if any of the following conditions are met:
Lévy’s continuity theorem: A sequence X j of n-variate random variables converges in distribution to random variable X if and only if the sequence φ X j converges pointwise to a function φ which is continuous at the origin. Where φ is the characteristic function of X. [13]
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
To estimate μ based on the first n observations, one can use the sample mean: T n = (X 1 + ... + X n)/n. This defines a sequence of estimators, indexed by the sample size n. From the properties of the normal distribution, we know the sampling distribution of this statistic: T n is itself normally distributed, with mean μ and variance σ 2 /n.
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely.It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.
It is important to note that the convergence in Doob's first martingale convergence theorem is pointwise, not uniform, and is unrelated to convergence in mean square, or indeed in any L p space. In order to obtain convergence in L 1 (i.e., convergence in mean), one requires uniform integrability of the random variables .