Search results
Results from the WOW.Com Content Network
The superconducting nanowire single-photon detector (SNSPD or SSPD) is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire. [1] It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001.
Nanowire lasers can be grown site-selectively on Si/SOI wafers with conventional MBE techniques, allowing for pristine structural quality without defects. Nanowire lasers using the group-III nitride and ZnO materials systems have been demonstrated to emit in the visible and ultraviolet, however infrared at the 1.3–1.55 μm is important for telecommunication bands. [3]
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10 −9 m). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length.
Schematic of silicon nanowire. Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium-ion batteries, thermoelectrics and sensors.
Their operation is also "label free" in the sense of not requiring fluorescent or radioactive labels on the analytes. [4]: 12–26 Zinc oxide nanowire is used for gas sensing applications, given that it exhibits high sensitivity toward low concentration of gas under ambient conditions and can be fabricated easily with low cost. [9]
Small body means small lens and means small sensor, so to keep smartphones slim and light, the smartphone manufacturers use a tiny sensor usually less than the 1/2.3" used in most bridge cameras. At one time only Nokia 808 PureView used a 1/1.2" sensor, almost three times the size of a 1/2.3" sensor. Bigger sensors have the advantage of better ...
Release 1 for monochrome cameras was released in August 2005. In Release A2.01, [ 2 ] issued in August 2007 included an additional linearity module. With Release 3, [ 3 ] published in November 2010 the first version was available that covered monochrome and color cameras as well as area and line cameras together with a characterization of ...
For a given (n,m) nanotube, if n = m, the nanotube is metallic; if n − m is a multiple of 3, then the nanotube is semiconducting with a very small band gap, otherwise the nanotube is a moderate semiconductor. Thus all armchair (n = m) nanotubes are metallic, and nanotubes (6,4), (9,1), etc. are semiconducting. [3]