Search results
Results from the WOW.Com Content Network
Turbo coding is an iterated soft-decoding scheme that combines two or more relatively simple convolutional codes and an interleaver to produce a block code that can perform to within a fraction of a decibel of the Shannon limit.
Compute forward probabilities Compute backward probabilities β {\displaystyle \beta } Compute smoothed probabilities based on other information (i.e. noise variance for AWGN , bit crossover probability for binary symmetric channel )
Parity check is the special case where n = k + 1.From a set of k values {}, a checksum is computed and appended to the k source values: + = =. The set of k + 1 values {} + is now consistent with regard to the checksum.
The forward–backward algorithm runs with time complexity () in space (), where is the length of the time sequence and is the number of symbols in the state alphabet. [1] The algorithm can also run in constant space with time complexity O ( S 2 T 2 ) {\displaystyle O(S^{2}T^{2})} by recomputing values at each step. [ 2 ]
The main idea is that if the inner block length is selected to be logarithmic in the size of the outer code then the decoding algorithm for the inner code may run in exponential time of the inner block length, and we can thus use an exponential-time but optimal maximum likelihood decoder (MLD) for the inner code.
Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi, [11] [12] as well as for reliable storage in media such as flash memory, hard disk and RAM. [13] Error-correcting codes are usually distinguished between convolutional codes and block codes:
In coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of ...
The forward algorithm, in the context of a hidden Markov model (HMM), is used to calculate a 'belief state': the probability of a state at a certain time, given the history of evidence. The process is also known as filtering. The forward algorithm is closely related to, but distinct from, the Viterbi algorithm.