Search results
Results from the WOW.Com Content Network
One possibility to determine a polygon of points of the intersection curve of two surfaces is the marching method (see section References). It consists of two essential parts: The first part is the curve point algorithm, which determines to a starting point in the vicinity of the two surfaces a point on the intersection curve. The algorithm ...
The surface-to-surface intersection (SSI) problem is a basic workflow in computer-aided geometric design: Given two intersecting surfaces in R 3, compute all parts of the intersection curve. If two surfaces intersect, the result will be a set of isolated points, a set of curves, a set of overlapping surfaces, or any combination of these cases. [1]
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
A Steinmetz curve is the curve of intersection of two right circular cylinders of radii and , whose axes intersect perpendicularly. In case of a = b {\displaystyle a=b} the Steimetz curves are the edges of a Steinmetz solid .
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
Solving them as a system of two simultaneous equations finds the points which belong to both shapes, which is the intersection. The equations below were solved using Maple . This method has applications in computational geometry , graphics rendering , shape modeling , physics-based modeling , and related types of computational 3d simulations.
Dupin's theorem is a tool for determining the curvature lines of a surface by intersection with suitable surfaces (see examples), without time-consuming calculation of derivatives and principal curvatures. The next example shows, that the embedding of a surface into a threefold orthogonal system is not unique.
This curve is called the characteristic of the family at a. As a varies the locus of these characteristic curves defines a surface called the envelope of the family of surfaces. The envelope of a family of surfaces is tangent to each surface in the family along the characteristic curve in that surface.