Search results
Results from the WOW.Com Content Network
Variable binding relates three things: a variable v, a location a for that variable in an expression and a non-leaf node n of the form Q(v, P). Note: we define a location in an expression as a leaf node in the syntax tree. Variable binding occurs when that location is below the node n. In the lambda calculus, x is a bound variable in the term M ...
A variable n is bound if it is in the scope of at least n binders (λ); otherwise it is free. The binding site for a variable n is the nth binder it is in the scope of, starting from the innermost binder. The most primitive operation on λ-terms is substitution: replacing free variables in a term with
Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.
The substitution rule states that for any φ and any term t, one can conclude φ[t/x] from φ provided that no free variable of t becomes bound during the substitution process. (If some free variable of t becomes bound, then to substitute t for x it is first necessary to change the bound variables of φ to differ from the free variables of t.)
A substitution σ is called a linear substitution if tσ is a linear term for some (and hence every) linear term t containing precisely the variables of σ ' s domain, i.e. with vars(t) = dom(σ). A substitution σ is called a flat substitution if xσ is a variable for every variable x. A substitution σ is called a renaming substitution if it ...
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
Each kind of quantification defines a corresponding closure operator on the set of formulas, by adding, for each free variable x, a quantifier to bind x. [9] For example, the existential closure of the open formula n >2 ∧ x n + y n = z n is the closed formula ∃ n ∃ x ∃ y ∃ z ( n >2 ∧ x n + y n = z n ); the latter formula, when ...