Search results
Results from the WOW.Com Content Network
and | are bitwise operators that occur in many programming languages. The major difference is that bitwise operations operate on the individual bits of a binary numeral, whereas conditional operators operate on logical operations. Additionally, expressions before and after a bitwise operator are always evaluated.
To determine if a number is a power of two, conceptually we may repeatedly do integer divide by two until the number won't divide by 2 evenly; if the only factor left is 1, the original number was a power of 2. Using bit and logical operators, there is a simple expression which will return true (1) or false (0):
In the case of odd parity, the coding is reversed. For a given set of bits, if the count of bits with a value of 1 is even, the parity bit value is set to 1 making the total count of 1s in the whole set (including the parity bit) an odd number. If the count of bits with a value of 1 is odd, the count is already odd so the parity bit's value is 0.
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor .
This article is a stub. You can help Wikipedia by expanding it.
The simplest checksum algorithm is the so-called longitudinal parity check, which breaks the data into "words" with a fixed number n of bits, and then computes the bitwise exclusive or (XOR) of all those words. The result is appended to the message as an extra word.
It is possible to use bitmasks to easily check the state of individual bits regardless of the other bits. To do this, turning off all the other bits using the bitwise AND is done as discussed above and the value is compared with 0. If it is equal to 0, then the bit was off, but if the value is any other value, then the bit was on.
For example, in an eight-bit byte, only seven bits represent the magnitude, which can range from 0000000 (0) to 1111111 (127). Thus numbers ranging from −127 10 to +127 10 can be represented once the sign bit (the eighth bit) is added. For example, −43 10 encoded in an eight-bit byte is 10101011 while 43 10 is 00101011.