Search results
Results from the WOW.Com Content Network
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1.
Doing this work, air inside the cylinder will cool to below the target temperature. To return to the target temperature (still with a free piston), the air must be heated, but is no longer under constant volume, since the piston is free to move as the gas is reheated. This extra heat amounts to about 40% more than the previous amount added.
The energy needed to do that has been taken from the air. Taking a volume of air at temperature T and mixing ratio of r , drying it by condensation will restore energy to the airmass. This will depend on the latent heat release as: T e ≈ T + L v c p d r {\displaystyle T_{e}\approx T+{\frac {L_{v}}{c_{pd}}}r} where:
Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg −1 ⋅K −1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg −1 ⋅K −1.
As mentioned earlier in the article the convection heat transfer coefficient for each stream depends on the type of fluid, flow properties and temperature properties. Some typical heat transfer coefficients include: Air - h = 10 to 100 W/(m 2 K) Water - h = 500 to 10,000 W/(m 2 K).
The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):
The heat capacity of an object, denoted by , is the limit =, where is the amount of heat that must be added to the object (of mass M) in order to raise its temperature by . The value of this parameter usually varies considerably depending on the starting temperature T {\displaystyle T} of the object and the pressure p {\displaystyle p} applied ...
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds