Search results
Results from the WOW.Com Content Network
Ketosis is a metabolic state characterized by elevated levels of ketone bodies in the blood or urine. Physiological ketosis is a normal response to low glucose availability. . In physiological ketosis, ketones in the blood are elevated above baseline levels, but the body's acid–base homeostasis is maintain
The accumulation of acetyl-CoA in turn produces excess ketone bodies through ketogenesis. [11] The result is a rate of ketone production higher than the rate of ketone disposal, and a decrease in blood pH. [12] In extreme cases the resulting acetone can be detected in the patient's breath as a faint, sweet odor.
Higher levels of ketones in the urine indicate that the body is using fat as the major source of energy. Ketone bodies that commonly appear in the urine when fats are burned for energy are acetoacetate and beta-hydroxybutyric acid. Acetone is also produced and is expired by the lungs. [1]
Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.
Ketoacidosis is caused by the uncontrolled production of ketone bodies. Usually the production of ketones is carefully controlled by several hormones, most importantly insulin. If the mechanisms that control ketone production fail, ketone levels may become dramatically elevated and cause dangerous changes in physiology such as a metabolic acidosis.
Glucose levels usually exceed 13.8 mmol/L or 250 mg/dL. [30] β-hydroxybutyrate (the conjugate base of β-hydroxybutyric acid, drawn above) despite chemically containing a carboxylate group instead of a ketone, is the principal "ketone body" in diabetic ketoacidosis.
The supervising clinician can then monitor glucose and beta-hydroxybutyrate levels throughout the course of the fast to generate an understanding of the child's fasting tolerance. [2] If beta-hydroxybutyrate levels continue to excessively rise or remain persistently elevated, additional workup can be performed to detect ketone transporter defects.
However, if only a little carbohydrate remains in the diet, the liver converts fat into fatty acids and ketone bodies, the latter passing into the brain and replacing glucose as an energy source. An elevated level of ketone bodies in the blood (a state called ketosis) eventually lowers the frequency of epileptic seizures. [1]