enow.com Web Search

  1. Ads

    related to: solving continued fractions
  2. education.com has been visited by 100K+ users in the past month

    It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Interactive Stories

      Enchant young learners with

      animated, educational stories.

    • Educational Songs

      Explore catchy, kid-friendly tunes

      to get your kids excited to learn.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]

  3. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Continued fractions are most conveniently applied to solve the general quadratic equation expressed in the form of a monic polynomial x 2 + b x + c = 0 {\displaystyle x^{2}+bx+c=0} which can always be obtained by dividing the original equation by its leading coefficient .

  4. Category:Continued fractions - Wikipedia

    en.wikipedia.org/wiki/Category:Continued_fractions

    In mathematics, regular continued fractions play an important role in representing real numbers, and have a rich general theory touching on a variety of topics in number theory. Moreover, generalized continued fractions have important and interesting applications in complex analysis .

  5. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    Products of such matrices take exactly the same form, and thus all such products yield solutions to Pell's equation. This can be understood in part to arise from the fact that successive convergents of a continued fraction share the same property: If p k−1 /q k−1 and p k /q k are two successive convergents of a continued fraction, then the ...

  6. Simple continued fraction - Wikipedia

    en.wikipedia.org/wiki/Simple_continued_fraction

    Every finite continued fraction represents a rational number, and every rational number can be represented in precisely two different ways as a finite continued fraction, with the conditions that the first coefficient is an integer and the other coefficients are positive integers. These two representations agree except in their final terms.

  7. Rogers–Ramanujan continued fraction - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan...

    The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

  8. Gauss's continued fraction - Wikipedia

    en.wikipedia.org/wiki/Gauss's_continued_fraction

    In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions , as well as some of the more complicated transcendental functions .

  9. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    Periodic continued fractions are in one-to-one correspondence with the real quadratic irrationals. The correspondence is explicitly provided by Minkowski's question-mark function. That article also reviews tools that make it easy to work with such continued fractions. Consider first the purely periodic part

  1. Ads

    related to: solving continued fractions