enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    Similarity is an equivalence relation on the space of square matrices. Because matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases, similar matrices share all properties of their shared underlying operator: Rank; Characteristic polynomial, and attributes that can be derived from it:

  3. Matrix equivalence - Wikipedia

    en.wikipedia.org/wiki/Matrix_equivalence

    In linear algebra, two rectangular m-by-n matrices A and B are called equivalent if = for some invertible n-by-n matrix P and some invertible m-by-m matrix Q.Equivalent matrices represent the same linear transformation V → W under two different choices of a pair of bases of V and W, with P and Q being the change of basis matrices in V and W respectively.

  4. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    Thus the square roots of A are given by VD 1/2 V −1, where D 1/2 is any square root matrix of D, which, for distinct eigenvalues, must be diagonal with diagonal elements equal to square roots of the diagonal elements of D; since there are two possible choices for a square root of each diagonal element of D, there are 2 n choices for the ...

  5. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix derived by applying an elementary row operation to the identity matrix. Equivalent matrix: A matrix that can be derived from another matrix through a sequence of elementary row or column operations. Frobenius matrix: A square matrix in the form of an identity matrix but with arbitrary entries in one column below the main diagonal.

  6. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    In general, a square complex matrix A is similar to a block diagonal matrix = [] where each block J i is a square matrix of the form = []. So there exists an invertible matrix P such that P −1 AP = J is such that the only non-zero entries of J are on the diagonal and the superdiagonal.

  8. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    The identity matrix commutes with all matrices. Jordan blocks commute with upper triangular matrices that have the same value along bands. If the product of two symmetric matrices is symmetric, then they must commute. That also means that every diagonal matrix commutes with all other diagonal matrices. [9] [10] Circulant matrices commute.

  9. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Not every square matrix is similar to a companion matrix, but every square matrix is similar to a block diagonal matrix made of companion matrices. If we also demand that the polynomial of each diagonal block divides the next one, they are uniquely determined by A, and this gives the rational canonical form of A.