Search results
Results from the WOW.Com Content Network
In spark-ignition internal combustion engines, knocking (also knock, detonation, spark knock, pinging or pinking) occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but when one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front.
It's commonly known as "Detonation or Knock". Engine management systems can overcome pre ignition by the means of a knock or detonation sensor. The sensor will detect pre ignition and retard the engines timing to protect the engine from damage. Undesired engine behavior will occur such as loss of performance or power.
The basic concept of an RDE is a detonation wave that travels around a circular channel (annulus). Fuel and oxidizer are injected into the channel, normally through small holes or slits. A detonation is initiated in the fuel/oxidizer mixture by some form of igniter. After the engine is started, the detonations are self-sustaining.
Unintentional detonation when deflagration is desired is a problem in some devices. In Otto cycle, or gasoline engines it is called engine knocking or pinging, and it causes a loss of power. It can also cause excessive heating, and harsh mechanical shock that can result in eventual engine failure. [29]
In a reciprocating engine, the use of water injection, also called anti-detonation injection or ADI, is used to prevent engine knocking also known as "detonation". [3] Commonly found on large radial engines with pressure carburetors, it is a mixture of water and alcohol injected into the carburetor at high power settings.
The National Highway Traffic Safety Administration is investigating reports of alleged engine failures in GM's 6.2-liter L87 V-8, an engine used in a wide variety of trucks and SUVs. NHTSA ...
A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. [ 1 ] [ 2 ] The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave and the next.
The phenomenon is exploited in pulse detonation engines, because a detonation produces a more efficient combustion of the reactants than a deflagration does, i.e. giving a higher yields. Such engines typically employ a Shchelkin spiral in the combustion chamber to facilitate the deflagration to detonation transition. [2] [3]