Search results
Results from the WOW.Com Content Network
OpenCV (Open Source Computer Vision Library) ... OpenNN – artificial neural network library written in C++, open-source; List of free and open-source software packages;
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
Progress in convolutional neural networks (CNNs) has improved the accurate detection of disease in medical images, particularly in cardiology, pathology, dermatology, and radiology. [ 27 ] Finally, pattern recognition is a field that uses various methods to extract information from signals in general, mainly based on statistical approaches and ...
An example of a typical computer vision computation pipeline for face recognition using k-NN including feature extraction and dimension reduction pre-processing steps (usually implemented with OpenCV): Haar face detection; Mean-shift tracking analysis; PCA or Fisher LDA projection into feature space, followed by k-NN classification
A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network.
In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain.
The teacher network is an exponentially decaying average of the student network's past parameters: ′ = + +. The inputs to the networks are two different crops of the same image, represented as T ( x ) {\displaystyle T(x)} and T ′ ( x ) {\displaystyle T'(x)} , where x {\displaystyle x} is the original image.