enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi, [11] [12] as well as for reliable storage in media such as flash memory, hard disk and RAM. [13] Error-correcting codes are usually distinguished between convolutional codes and block codes:

  3. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.

  4. Memory error - Wikipedia

    en.wikipedia.org/wiki/Memory_error

    Encoding specificity is when retrieval is successful to the extent that the retrieval cues used to help recall, match the cues the individual used during learning or encoding. [33] Memory errors due to encoding specificity means that the memory is likely not forgotten, however, the specific cues used during encoding the primary event are now ...

  5. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).

  6. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    As explained earlier, it can either detect and correct single-bit errors or it can detect (but not correct) both single and double-bit errors. With the addition of an overall parity bit, it becomes the [8,4] extended Hamming code and can both detect and correct single-bit errors and detect (but not correct) double-bit errors.

  7. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    Cyclic codes are not only simple to implement but have the benefit of being particularly well suited for the detection of burst errors: contiguous sequences of erroneous data symbols in messages. This is important because burst errors are common transmission errors in many communication channels, including magnetic and optical storage devices.

  8. Encoding (memory) - Wikipedia

    en.wikipedia.org/wiki/Encoding_(memory)

    Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. [1]

  9. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    LDPC encoder. During the encoding of a frame, the input data bits (D) are repeated and distributed to a set of constituent encoders. The constituent encoders are typically accumulators and each accumulator is used to generate a parity symbol.