enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  3. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...

  4. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    The function has second derivative ; thus it is convex on the set where and concave on the set where Examples of functions that are monotonically increasing but not convex include f ( x ) = x {\displaystyle f(x)={\sqrt {x}}} and g ( x ) = log ⁡ x {\displaystyle g(x)=\log x} .

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of the function given by () = + ⁡ ⁡ + is ′ = + ⁡ (⁡) ⁡ () + = + ⁡ ⁡ (). Here the second term was computed using the chain rule and the third term using the product rule. The known derivatives of the elementary functions , , ⁡ (), ⁡ (), and ⁡ =, as well as the constant , were also used.

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...

  7. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    For a function f, if its second derivative f″(x) exists at x 0 and x 0 is an inflection point for f, then f″(x 0) = 0, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third ...

  8. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.

  9. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...