Search results
Results from the WOW.Com Content Network
In physics the Einstein-aether theory, also called aetheory, is the name coined in 2004 for a modification of general relativity that has a preferred reference frame and hence violates Lorentz invariance. These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether.
As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and ...
Einstein showed how the velocity of light in a moving medium is calculated, in the velocity-addition formula of special relativity. Einstein's theory of general relativity provides the solution to the other light-dragging effects, whereby the velocity of light is modified by the motion or the rotation of nearby masses.
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.
The results of various experiments, including the Michelson–Morley experiment in 1887 (subsequently verified with more accurate and innovative experiments), led to the theory of special relativity, by showing that the aether did not exist. [20] Einstein's solution was to discard the notion of an aether and the absolute state of rest.
The solutions that are not exact are called non-exact solutions. Such solutions mainly arise due to the difficulty of solving the EFE in closed form and often take the form of approximations to ideal systems. Many non-exact solutions may be devoid of physical content, but serve as useful counterexamples to theoretical conjectures.
Einstein's paper includes a fundamental description of the kinematics of the rigid body, and it did not require an absolutely stationary space, such as the aether. Einstein identified two fundamental principles, the principle of relativity and the principle of the constancy of light (light principle), which served as the axiomatic basis of his ...
An aether theorist would have regarded "...nor according to Maxwell's equations" as simply representing a misunderstanding on Einstein's part. Unfettered by any notion that the speed of light represents a cosmic limit, the aether theorist would simply have set velocity equal to c , noted that yes indeed, the light would appear to be frozen, and ...