enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    If the heterotroph uses chemical energy, it is a chemoheterotroph (e.g., humans and mushrooms). If it uses light for energy, then it is a photoheterotroph (e.g., green non-sulfur bacteria). Heterotrophs represent one of the two mechanisms of nutrition (trophic levels), the other being autotrophs (auto = self, troph = nutrition).

  3. Heterotrophic nutrition - Wikipedia

    en.wikipedia.org/wiki/Heterotrophic_nutrition

    Heterotrophic nutrition is a mode of nutrition in which organisms depend upon other organisms for food to survive. They can't make their own food like Green plants. Heterotrophic organisms have to take in all the organic substances they need to survive. All animals, certain types of fungi, and non-photosynthesizing plants are heterotrophic.

  4. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    An example is the koala, because it feeds only on eucalyptus leaves. Primary consumers that feed on many kinds of plants are called generalists. Secondary consumers are small/medium-sized carnivores that prey on herbivorous animals. Omnivores, which feed on both plants and animals, can be considered as being both primary and secondary consumers.

  5. Holozoic nutrition - Wikipedia

    en.wikipedia.org/wiki/Holozoic_nutrition

    Amoeba, Entamoeba histolytica uses holozoic nutrition. Holozoic nutrition (Greek: holo-whole ; zoikos-of animals) is a type of heterotrophic nutrition that is characterized by the internalization and internal processing of liquids or solid food particles. [1]

  6. Photoheterotroph - Wikipedia

    en.wikipedia.org/wiki/Photoheterotroph

    Photoheterotrophs generate ATP using light, in one of two ways: [6] [7] they use a bacteriochlorophyll-based reaction center, or they use a bacteriorhodopsin.The chlorophyll-based mechanism is similar to that used in photosynthesis, where light excites the molecules in a reaction center and causes a flow of electrons through an electron transport chain (ETS).

  7. Holozoa - Wikipedia

    en.wikipedia.org/wiki/Holozoa

    Holozoa (from Ancient Greek ὅλος (holos) 'whole' and ζῷον (zoion) 'animal') is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species

  8. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  9. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need. Heterotrophs obtain energy by breaking down carbohydrates or oxidizing organic molecules (carbohydrates, fats, and proteins) obtained in food.