Search results
Results from the WOW.Com Content Network
[4] [6] In skeletal muscle, glycogen is found in a low concentration (1–2% of the muscle mass): the skeletal muscle of an adult weighing 70 kg stores roughly 400 grams of glycogen. [4] Small amounts of glycogen are also found in other tissues and cells, including the kidneys , red blood cells , [ 7 ] [ 8 ] [ 9 ] white blood cells , [ 10 ] and ...
Fibroblasts are the most common cell type in connective tissue ECM, in which they synthesize, maintain, and provide a structural framework; fibroblasts secrete the precursor components of the ECM, including the ground substance. Chondrocytes are found in cartilage and produce the cartilaginous matrix. Osteoblasts are responsible for bone formation.
In myocytes (muscle cells), glycogen degradation serves to provide an immediate source of glucose-6-phosphate for glycolysis, to provide energy for muscle contraction. Glucose-6-phosphate can not pass through the cell membrane, and is therefore used solely by the myocytes that produce it.
In the absence of dietary sugars and carbohydrates, glucose is obtained from the breakdown of stored glycogen. Glycogen is a readily-accessible storage form of glucose, stored in notable quantities in the liver and skeletal muscle. [5] When the glycogen reserve is depleted, glucose can be obtained from the breakdown of fats from adipose tissue.
The different functions of glycogen in muscle or liver make the regulation mechanisms of its metabolism differ in each tissue. [7] These mechanisms are based mainly on the differences on structure and on the regulation of the enzymes that catalyze synthesis, glycogen synthase (GS), and degradation, glycogen phosphorylase (GF).
The glycogen phosphorylase monomer is a large protein, composed of 842 amino acids with a mass of 97.434 kDa in muscle cells. While the enzyme can exist as an inactive monomer or tetramer, it is biologically active as a dimer of two identical subunits.
Myophosphorylase or glycogen phosphorylase, muscle associated (PYGM) is the muscle isoform of the enzyme glycogen phosphorylase and is encoded by the PYGM gene. This enzyme helps break down glycogen (a form of stored carbohydrate ) into glucose-1-phosphate (not glucose ), so it can be used within the muscle cell .
CSGAGs are important in providing support and adhesiveness in bone, skin, and cartilage. Other biological functions for which CSGAGs are known to play critical functions in include inhibition of axonal growth and regeneration in CNS development, roles in brain development, neuritogenic activity, and pathogen infection. [17] Keratan sulfates