enow.com Web Search

  1. Ad

    related to: verifying trigonometric identities examples

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function , and then simplifying the resulting integral with a trigonometric identity.

  4. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Another important application is the integration of non-trigonometric functions: a common technique which involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity. One of the most prominent examples of trigonometric identities involves the equation ...

  5. Tangent half-angle formula - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle_formula

    The angle between the horizontal line and the shown diagonal is ⁠ 1 2 ⁠ (a + b). This is a geometric way to prove the particular tangent half-angle formula that says tan ⁠ 1 2 ⁠ (a + b) = (sin a + sin b) / (cos a + cos b). The formulae sin ⁠ 1 2 ⁠(a + b) and cos ⁠ 1 2 ⁠(a + b) are the ratios of the actual distances to the length ...

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions. The identity is. 1. {\displaystyle \sin ^ {2}\theta +\cos ^ {2 ...

  7. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    De Moivre's formula. In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it is the case that where i is the imaginary unit (i2 = −1). The formula is named after Abraham de Moivre, although he never stated it in his works. [1]

  8. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    Trigonometry. In trigonometry, the law of tangents or tangent rule[1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a, b, and c are the lengths of the three sides of the triangle, and α, β, and γ are the angles opposite those three respective sides.

  9. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    v. t. e. Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary ...

  1. Ad

    related to: verifying trigonometric identities examples